Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 6 Maòou 2010
EktÐmhsh Diast matoc empistosônhc Melet same thn ektim tria ˆθ paramètrou θ: An gnwrðzoume thn katanom thc X kai eðnai F X (x; θ), tìte brðskoume th ˆθ me 1 Mèjodo rop n 2 Mèjodo megðsthc pijanofˆneiac Anexˆrthta apì thn katanom thc X èqoume touc ektimhtèc: θ := µ ˆθ = x θ := σ 2 ˆθ = s 2 ˆθ = s 2 H tim thc ektim triac ˆθ exartˆtai apì to deðgma {x 1,..., x n }. ˆθ eðnai t.m. me E(ˆθ) µˆθ, Var(ˆθ) σ 2ˆθ Katanom thc ˆθ? E(ˆθ)? Var(ˆθ)? Me bˆsh thn katanom thc ˆθ jèloume na orðsoume èna diˆsthma [θ 1, θ 2 ] pou ja perièqei me kˆpoia pijanìthta thn pragmatik tim thc θ.
Diˆsthma empistosônhc thc µ Ektim tria (shmeiak ektðmhsh) thc µ: x µ x = E(ˆµ)= µ σ 2 x = Var( x) = Var ( 1 n ) n x i i=1 = 1 n n 2 Var(x i ) = 1 n 2 i=1 n i=1 = 1 n 2 (n σ2 )= σ2 n σ x = σ/ n stajerì sfˆlma H katanom thc x exartˆtai apì 1 th diasporˆ thc X, σ 2 (gnwst / ˆgnwsth) 2 thn katanom thc X (kanonik ìqi) 3 mègejoc tou deðgmatoc n (megˆlo / mikrì) σ 2
Diˆsthma empistosônhc thc µ - gnwst diasporˆ σ 2 Gia thn katanom thc x èqoume dôo peript seic 1 X N(µ, σ 2 ) 2 n > 30 x N(µ, σ 2 /n) X N(µ, σ 2 ) n < 30 x? 1 An h katanom thc X eðnai kanonik κατανομή της X 1 +... + X n είναι κανονική h katanom thc x eðnai kanonik 2 An to deðgma eðnai megˆlo n > 30 Κεντρικό Οριακό Θεώρημα h katanom thc x eðnai kanonik
gnwstì σ 2 kai x akoloujeð kanonik katanom x N(µ, σ 2 /n) z x µ σ/ N(0, 1) n Gia kˆje pijanìthta α (kai 1 α) upˆrqoun oi antðstoiqec timèc thc z, z α/2 = z 1 α/2 : P(z < z α/2 ) = Φ(z α/2 ) = α/2 P(z > z 1 α/2 ) = 1 Φ(z 1 α/2 ) = 1 (1 α/2) = α/2 P(z < z α/2 z > z 1 α/2 ) = α P(z α/2 < z < z 1 α/2 ) =Φ(z 1 α/2 ) Φ(z α/2 ) = 1 α Apì ton statistikì pðnaka tupik c kanonik c katanom c DÐnetai pijanìthta 1 α krðsimh tim z 1 α/2 = Φ 1 (1 α/2) }
gnwstì σ 2, x akoloujeð kanonik katanom (sunèqeia) h z an kei sto diˆsthma [z α/2, z 1 α/2 ] = [ z 1 α/2, z 1 α/2 ] me pijanìthta 1 α. Apì to metasqhmatismì z x µ σ/ n diast matoc [ z 1 α/2, z 1 α/2 ] z 1 α/2 = x µ σ/ n LÔnoume wc proc µ èqoume gia ta ˆkra tou z 1 α/2 = x µ σ/ n µ = x + z 1 α/2 σ n µ = x z 1 α/2 σ n Diˆsthma empistosônhc thc µ se epðpedo empistosônhc 1 α [ x z 1 α/2 σ n, x + z 1 α/2 σ n ]
gnwstì σ 2, x akoloujeð kanonik katanom (sunèqeia) ErmhneÐa diast matoc empistosônhc me pijanìthta (empistosônh) 1 α h mèsh tim µ brðsketai mèsa s' autì to diˆsthma OQI an qrhsimopoioôsame pollˆ tètoia diast mata apì diaforetikˆ deðgmata, posostì (1 α)% apì autˆ ja perieðqan th µ NAI me 1 α pijanìthta (empistosônh) to diˆsthma autì ja perièqei thn pragmatik µ NAI
gnwstì σ 2, x akoloujeð kanonik katanom (sunèqeia) DiadikasÐa ektðmhshc tou diast matoc empistosônhc tou µ 1 Epilog tou 1 α, σ gnwstì, x apì to deðgma. 2 EÔresh krðsimhc tim c z 1 α/2 apì ton pðnaka gia tupik kanonik katanom. 3 Antikatˆstash ston tôpo [ x z 1 α/2 σ n, x + z 1 α/2 σ n ]
Parˆdeigma Diˆsthma empistosônhc se epðpedo 95% gia gia to mèso ìrio èntashc hlektrikoô reômatoc gia asfˆleiec twn 40 ampèr pou parˆgei mia etaireða? DÐnetai σ 2 = 1 (ampèr) 2 Iστoγραμμα oριoυ ρευματος για ασφαλειες εταιρειας A 6 41.5 Θηκoγραμμα oριoυ ρευματος για ασφαλειες εταιριας A συχνoτητα 5 4 3 2 1 41 40.5 40 39.5 39 38.5 0 38 39 40 41 42 43 ευρoς A summetrða, ìqi makrièc ourèc, ìqi akraða shmeða X N(µ, 1) µ =?
Parˆdeigma (sunèqeia) X N(µ, 1) x N(µ, 1/25) x = 1 25 25 i=1 x i = 995.1 25 = 39.8 DiadikasÐa ektðmhshc tou diast matoc empistosônhc tou µ 1 1 α = 0.95, σ = 1, x = 39.8. 2 KrÐsimh tim : z 0.975 = Φ 1 (0.975) = 1.96. 3 σ x ± z 1 α/2 n 39.8 ± 1.96 1 5 [39.41, 40.20] Sumpèrasma: Se 95% epðpedo empistosônhc perimènoume to mèso ìrio èntashc hlektrikoô reômatoc gia asfˆleiec twn 40 ampèr me bˆsh to deðgma apì thn etairða A na kumaðnetai metaxô 39.41 kai 40.20.
Diˆsthma empistosônhc thc µ, ˆgnwsth diasporˆ σ 2 PerÐptwsh 1: megˆlo deðgma (n > 30) s 2 σ 2 : [ x z 1 α/2 s n, x + z 1 α/2 s n ] PerÐptwsh 2: mikrì deðgma (n < 30) kai X N(µ, σ 2 ) Tìte isqôei t x µ s/ n t n 1 katanom student me n 1 bajmoôc eleujerðac 0.4 0.3 N(0,1) t 5 t 24 t 50 f (x) X 0.2 0.1 0 6 4 2 0 2 4 6 x
'Agnwsth diasporˆ σ 2 0.4 0.3 f X (x) 0.2 0.1 t 24,0.025 = 2.064 t 24,0.975 =2.064 0 6 4 2 0 2 4 6 x DiadikasÐa ektðmhshc tou diast matoc empistosônhc tou µ 1 Epilog tou 1 α, σ ˆgnwsto, x kai s apì to deðgma. 2 EÔresh krðsimhc tim c t n 1, 1 α/2 apì ton pðnaka gia katanom student. 3 Antikatˆstash ston tôpo [ x t n 1,1 α/2 s n, x + t n 1,1 α/2 s n ]
'Agnwsth diasporˆ σ 2 PerÐptwsh 3: mikrì deðgma (n < 30) kai X N(µ, σ 2 ) Mh-parametrik mèjodoc
Parˆdeigma Diˆsthma empistosônhc se epðpedo 95% gia to mèso ìrio èntashc hlektrikoô reômatoc thc asfˆleiac? [σ 2 ˆgnwsto] Mikrì deðgma (n < 30) kai X N(µ, σ 2 ) t x µ s/ n t n 1, bajmoð eleujerðac: n 1 = 24 ( s 2 = 1 25 ) xi 2 25 (39.8) 2 = 0.854 (ampèr) 2 24 i=1 DiadikasÐa ektðmhshc tou diast matoc empistosônhc tou µ 1 1 α = 0.95, x = 39.8, s 2 = 0.854. 2 KrÐsimh tim : t 24,0.975 = 2.064. 3 s x ± t n 1,1 α/2 n 39.80 ± 2.064 0.854 5 [39.42, 40.18] An z 0.975 = 1.96 antð t 24, 0.975 = 2.064 39.8 ± 1.96 0.854 5 [39.44, 40.16]
EktÐmhsh diast matoc empistosônhc thc µ diasporˆ X -katanom n x -katanom d.e. gnwst kanonik z x µ σ/ N(0, 1) n x ± z 1 α/2 σ n gnwst mh kanonik megˆlo z x µ σ/ N(0, 1) n x ± z 1 α/2 σ n gnwst mh kanonik mikrì ˆgnwsth megˆlo z x µ s/ N(0, 1) x ± z n 1 α/2 s n ˆgnwsth kanonik mikrì t x µ s/ n tn 1 x ± t n 1,1 α/2 s n ˆgnwsth mh kanonik mikrì Genikˆ gia to d.e. thc µ brðsketai apì σ x ± z α/2 n s x ± t n 1,1 α/2 n
To diˆsthma empistosônhc exartˆtai apì: thn katanom kai th σ 2 thc t.m. X to mègejoc n tou deðgmatoc to epðpedo empistosônhc 1 α Gia dedomèno eôroc diast matoc empistosônhc mporoôme na broôme to mègejoc n pou antistoiqeð apì ton antðstoiqo tôpo. Endeiktik perðptwsh: n < 30, X N(µ, σ 2 ) kai σ 2 ˆgnwsto eôroc tou d.e. w = 2t n 1,1 α/2 s n Gia eôroc w prèpei to deðgma na èqei mègejoc n = ( 2t n 1,1 α/2 s ) 2 ( n = 2z w 1 α/2 s ) 2 w anˆloga me to n pou brðskoume.
Parˆdeigma Sto prohgoômeno arijmhtikì parˆdeigma (asfˆleiec}, qrhsimopoi ntac t-katanom br kame 95% d.e. 39.8 ± 2.064 0.854 5 [39.42, 40.18] EÔroc d.e.: w = 2 2.064 0.854 5 = 0.76 isodônama akrðbeia gôrw apì th x : 2.064 0.854 5 = 0.38 An jèloume eôroc 0.5 ( akrðbeia 0.25), pìso prèpei na megal sei to deðgma? ( ) 2 (kanonik katanom ) n = 2 1.96 0.854 0.5 = 52.5 53 (katanom student) ( ) 2 t 24,0.975 = 2.064 n = 2 2.064 0.854 0.5 = 58.2 59 ( ) 2 t 58,0.975 = 2.002 n = 2 2.002 0.854 0.5 = 54.7 55 ( ) 2 t 54,0.975 = 2.005 n = 2 2.005 = 54.9 55 0.854 0.5
'Askhsh Diˆsthma empistosônhc thc mèshc tim c µ Εγιναν 15 μετρήσεις της συγκέντρωσης διαλυμένου οξυγόνου (Δ.Ο.) σε ένα ποτάμι (σε mg/l) 1.8 2.0 2.1 1.7 1.2 2.3 2.5 2.9 1.6 2.2 2.3 1.8 2.4 1.6 1.9 Από παλιότερες μετρήσεις γνωρίζουμε ότι η διασπορά του Δ.Ο. είναι 0.1 (mg/l) 2. 1 Εκτιμείστε τη διασπορά της συγκέντρωσης Δ.Ο. από το δείγμα καθώς και τα διαστήματα εμπιστοσύνης σε επίπεδο 99% και 90%. Εξετάστε και για τα δύο επίπεδα εμπιστοσύνης αν μπορούμε να δεχτούμε την εμπειρική τιμή της διασποράς γι αυτό το δείγμα. 2 Εκτιμείστε τη μέση συγκέντρωση Δ.Ο. από το δείγμα και δώστε γι αυτήν 95% διάστημα εμπιστοσύνης υποθέτοντας πρώτα ότι η διασπορά είναι γνωστή και μετά χρησιμοποιώντας αυτήν του δείγματος. 3 Αν υποθέσουμε ότι για ένα εργοστάσιο δίπλα στο ποτάμι είναι σημαντικό η μέση συγκέντρωση Δ.Ο. να μην πέφτει κάτω από 1.8 mg/l, θα προκαλούσαν ανησυχία αυτές οι παρατηρήσεις (διασπορά από το δείγμα);
'Askhsh (sunèqeia) 4 Αν δε μας ικανοποιεί το εύρος του τελευταίου παραπάνω διαστήματος και θέλουμε να το μειώσουμε σε 0.2 mg/l πόσες επιπρόσθετες ημερήσιες μετρήσεις πρέπει να γίνουν; 5 Ενας άλλος τρόπος να ελέγξουμε αν η συγκέντρωση του Δ.Ο. πέφτει σε μη επιθυμητά επίπεδα είναι να δούμε αν το ποσοστό των ημερών που η τιμή της συγκέντρωσης Δ.Ο. πέφτει στο επίπεδο 1.6 mg/l και κάτω ξεπερνάει το 15%. Εκτιμείστε αυτό το ποσοστό από το δείγμα. Μπορείτε να δώσετε 95% διάστημα εμπιστοσύνης για το ποσοστό; Πόσο πρέπει να είναι το μέγεθος του δείγματος για να μπορεί να εκτιμηθεί 95% διάστημα εμπιστοσύνης για το ποσοστό με πλάτος το πολύ 10%;